Midterm Exam

Statistical Physics

Wednesday December 9, 2015 09:00-11:00

Read these instructions carefully before making the exam!

- Write your name and student number on every sheet.
- Make sure to write readable for other people than yourself. Points will NOT be given for answers in illegible writing.
- Language; your answers have to be in English.
- Use a separate sheet for each problem.
- Use of a (graphing) calculator is allowed.
- This exam consists of $\mathbf{3}$ problems.
- The weight of the problems is Problem 1 (P1=27 pts); Problem 2 ($\mathbf{P} 2=27 \mathrm{pts}$); Problem 3 ($\mathrm{P} 3=36 \mathrm{pts}$). Weights of the various subproblems are indicated at the beginning of each problem.
- The grade of the midterm exam is calculated as ($\mathbf{P} 1+\mathbf{P} 2+\mathrm{P} 3+10) / \mathbf{1 0}$.
- For all problems you have to write down your arguments and the intermediate steps in your calculation, else the answer will be considered as incomplete and points will be deducted.

PROBLEM 1 Score: $a+b+c+d+e+f=5+5+5+4+4+4=27$

The equation of state of an ideal gas of N molecules is given by $P V=N k T$. The energy of this ideal gas is a function of temperature only and is given by $E=\frac{3}{2} N k T$.
Calculate the heat Q absorbed by this gas when:
a) the volume of the gas is changed from V_{i} to V_{f} in an reversible isothermal process.
b) the temperature is changed from T_{i} to T_{f} in a reversible process in which the volume V is kept constant.
c) the temperature is changed from T_{i} to T_{f} in a reversible process in which the pressure P is kept constant.

Suppose the ideal gas is initially at temperature T_{1} and has a volume V_{1}. We will use the notation $\left(T_{1}, V_{1}\right)$ for this state of the gas. The gas then undergoes a reversible cyclic process in which it changes to the state $\left(T_{2}, V_{2}\right)$ under constant pressure conditions, subsequently it changes to the state (T_{1}, V_{2}) under constant volume conditions and finally it returns to its initial state (T_{1}, V_{1}) under constant temperature conditions.
d) Show that the heat Q absorbed by the gas during this cyclic process is given by:

$$
Q=N k\left(T_{2}-T_{1}\right)+N k T_{1} \ln \frac{V_{1}}{V_{2}}
$$

e) Calculate the work W done on the gas during the process.
f) Show that $W+Q=0$ and explain why the equality holds.

PROBLEM 2 Score: $a+b+c=9+9+9=27$
Consider a crystal with N independent identical atoms. Each atom has a low energy state that is threefold degenerate. Assume that the energy of this low energy state is zero. Each atom has one high energy state with energy ε. This high energy state is also threefold degenerate. The number of atoms in the high energy state is n.
a) Explain that the number of microstates Ω as a function of the number of atoms n in the high energy state is given by:

$$
\Omega(n)=\frac{3^{N} N!}{n!(N-n)!}
$$

b) Calculate the energy E of this system of N atoms using the micro-canonical ensemble method. Express your answer in terms of ε, k, T and N.
c) Calculate the canonical partition function Z of this system of N atoms and calculate the energy of the system using this partition function.

PROBLEM 3 Score: $a+b+c+d=9+9+9+9=36$

A harmonic oscillator with energy levels given by $\varepsilon_{j}=\hbar \omega\left(j+\frac{1}{2}\right)$ is in equilibrium with a heat bath at temperature T. The angular frequency of the harmonic oscillator is ω.
a) Proof that the mean energy $\bar{\varepsilon}$ of this oscillator is given by: $\bar{\varepsilon}=\frac{1}{2} \hbar \omega+\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}$

Now consider a 1-dimensional linear crystal that consists of N atoms. The crystal has length L. Assume that the crystal can be described as a system of N coupled oscillators and that this system can only vibrate in the longitudinal direction.
b) Use Debye's theory to show that the number of angular frequencies between ω and $\omega+d \omega$ is given by:
$f(\omega) d \omega=\frac{L}{\pi v_{0}} d \omega$

In this expression v_{0} is the velocity of the longitudinal waves.
c) Explain the meaning of the Debye frequency ω_{D} and show that for this 1-dimensional crystal,
$\omega_{D}=N \frac{\pi v_{0}}{L}$
d) Give an expression for the heat capacity C_{V} of this 1-dimensional crystal and show that in case $T \rightarrow 0$ then C_{V} decreases like T.

Solutions

PROBLEM 1

In this problem we use the first law: $d E=\bar{d} Q+\bar{d} W=\bar{d} Q-P d V$
a)

As the energy E is a function of T only, we have for an isothermal process: $d E=0$ and thus,

$$
\bar{d} Q=P d V \Rightarrow Q=\int_{V_{i}}^{V_{f}} P d V=N k T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=N k T \ln \frac{V_{f}}{V_{i}}
$$

b)

If V is constant then $d V=0$ and,

$$
\bar{d} Q=d E=\frac{3}{2} N k d T \Rightarrow Q=\frac{3}{2} N k \int_{T_{i}}^{T_{f}} d T=\frac{3}{2} N k\left(T_{f}-T_{i}\right)
$$

c)

In this case $\bar{d} Q=d E+P d V=\frac{3}{2} N k d T+P d V$ and we use the equation of state (with P constant) to find $P d V=N k d T$) and,

$$
\bar{d} Q=\frac{3}{2} N k d T+N k d T=\frac{5}{2} N k d T \Rightarrow Q=\frac{5}{2} N k \int_{T_{i}}^{T_{f}} d T=\frac{5}{2} N k\left(T_{f}-T_{i}\right)
$$

d)

During step 1 (constant pressure, see c)): $Q_{1}=\frac{5}{2} N k\left(T_{2}-T_{1}\right)$
During step 2 (constant volume, see b)): $Q_{2}=\frac{3}{2} N k\left(T_{1}-T_{2}\right)$
During step 3 (constant temperature, see a)): $Q_{3}=N k T_{1} \ln \frac{V_{1}}{V_{2}}$
And in total:

$$
Q=Q_{1}+Q_{2}+Q_{3}=N k\left(T_{2}-T_{1}\right)+N k T_{1} \ln \frac{V_{1}}{V_{2}}
$$

e)

During step 1: $\bar{d} W=-P d V$

$$
W_{1}=-P \int_{V_{1}}^{V_{2}} d V=P\left(V_{1}-V_{2}\right)
$$

During step 2: $W_{2}=0$ because V is constant and thus $d V=0$.
During step 3: $\bar{d} W=-P d V$

$$
W_{3}=-\int_{V_{2}}^{V_{1}} P d V=-\int_{V_{2}}^{V_{1}} \frac{N k T_{1}}{V} d V=N k T_{1} \ln \frac{V_{2}}{V_{1}}
$$

Total work done on the gas is:

$$
W=W_{1}+W_{2}+W_{3}=P\left(V_{1}-V_{2}\right)+N k T_{1} \ln \frac{V_{2}}{V_{1}}
$$

Because of the equation of state we have,
$P V_{1}=N k T_{1}$ and $P V_{2}=N k T_{2}$
Substituting this in the equation above we find:

$$
W=N k\left(T_{1}-T_{2}\right)+N k T_{1} \ln \frac{V_{2}}{V_{1}}
$$

f)

$$
W+Q=N k\left(T_{1}-T_{2}\right)+N k T_{1} \ln \frac{V_{2}}{V_{1}}+N k\left(T_{2}-T_{1}\right)+N k T_{1} \ln \frac{V_{1}}{V_{2}}=0
$$

This equality is valid because the energy is a function of state and thus during a cyclic process,

$$
\Delta E=0=W+Q
$$

PROBLEM 2

a)

There are $\frac{N!}{(N-n)!}$ ways to pick n atoms out of N. The factor $\frac{1}{n!}$ accounts for the fact that the atoms are indistinguishable. Because the low energy state is threefold degenerate for each atom in this state there are 3 possibilities. There are $N-n$ atoms in this low energy state, this gives a factor 3^{N-n}. The high energy state is also threefold degenerate, thus for each atom in this state there are three possibilities. There are n atoms in the high energy state, this gives a factor 3^{n}. Combining all these factors:

$$
\Omega(n)=3^{N-n} 3^{n} \frac{N!}{n!(N-n)!}=\frac{3^{N} N!}{n!(N-n)!}
$$

b)

The entropy S is given by,

$$
S=k \ln \Omega(n)=k \ln \left(3^{N} \frac{N!}{n!(N-n)!}\right)
$$

Using Stirling's approximation this can be written as:

$$
S=k(N \ln 3+N \ln N-N-n \ln n+n-(N-n) \ln (N-n)+(N-n))
$$

The temperature is given by,

$$
\frac{1}{T}=\frac{\partial S}{\partial E}=\frac{\partial S}{\partial n} \frac{\partial n}{\partial E}
$$

With $E=n \varepsilon$ we find,

$$
\begin{gathered}
\frac{1}{T}=\frac{\partial S}{\partial n} \frac{\partial n}{\partial E}=\frac{1}{\varepsilon} \frac{\partial S}{\partial n}=\frac{k}{\varepsilon}(-1-\ln n+1+\ln (N-n)+1-1)=\frac{k}{\varepsilon}(-\ln n+\ln (N-n)) \\
=\frac{k}{\varepsilon} \ln \left(\frac{(N-n)}{n}\right) \Rightarrow \\
\frac{\varepsilon}{k T}=\ln \left(\frac{(N-n)}{n}\right) \Rightarrow e^{\frac{\varepsilon}{k T}}=\left(\frac{N}{n}-1\right) \Rightarrow n=\frac{N}{1+e^{\frac{\varepsilon}{k T}}}
\end{gathered}
$$

And

$$
E=n \varepsilon=\frac{N \varepsilon}{1+e^{\frac{\varepsilon}{k T}}}
$$

c)

The single atom partition function is:

$$
Z_{1}=3+3 e^{-\beta \varepsilon}
$$

The N atoms are independent thus the partition function for the N atoms is:

$$
\begin{gathered}
Z=\left(Z_{1}\right)^{N}=\left(3+3 e^{-\beta \varepsilon}\right)^{N} \\
E=-\frac{\partial \ln Z}{\partial \beta}=-\frac{\partial \ln \left(Z_{1}\right)^{N}}{\partial \beta}=-N \frac{\partial \ln Z_{1}}{\partial \beta}=\frac{3 N \varepsilon e^{-\beta \varepsilon}}{3+3 e^{-\beta \varepsilon}}=\frac{N \varepsilon}{1+e^{\frac{\varepsilon}{k T}}}
\end{gathered}
$$

PROBLEM 3

a)

The partition function for the oscillator is given by:

$$
Z=\sum_{j=1}^{\infty} e^{-\beta \varepsilon_{j}}=\sum_{j=1}^{\infty} e^{-\beta \hbar \omega\left(j+\frac{1}{2}\right)}=e^{-\frac{x}{2}} \sum_{j=1}^{\infty} e^{-j x}=\frac{e^{-\frac{x}{2}}}{1-e^{-x}}
$$

With $x=\beta \hbar \omega$.

$$
\bar{\varepsilon}=-\frac{\partial \ln Z}{\partial \beta}=-\frac{\partial \ln Z}{\partial x} \frac{\partial x}{\partial \beta}=-\hbar \omega \frac{\partial}{\partial x}\left(-\frac{x}{2}-\ln \left(1-e^{-x}\right)\right)=\frac{1}{2} \hbar \omega+\frac{\hbar \omega e^{-x}}{1-e^{-x}}
$$

And putting back $x=\beta \hbar \omega$ we find:

$$
\bar{\varepsilon}=\frac{1}{2} \hbar \omega+\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

b)

Use the Debye approach and consider elastic waves through the crystal. From the solution of the 1D-wave equation: $\varphi=A \sin k_{x} x$ and taking this function to vanish at $x=0$ and at $x=L$ results in,
$k_{x}=\frac{n_{x} \pi}{L}$ with n_{x} a non-zero positive integer.

The total number of states with $|\vec{k}|<k$ is then given by the length of the line representing positive integers (thus length k) divided by the unit length of one state, in k space.

$$
\Gamma(k)=\frac{k}{\frac{\pi}{L}}=\frac{k L}{\pi}
$$

The number of states between $k+d k$ and k is:

$$
f(k) d k=\Gamma(k+d k)-\Gamma(k)=\frac{\partial \Gamma}{\partial k} d k=\frac{L}{\pi} d k
$$

From the wave equation we also have $\omega=k v_{0}$, substituting this in the equation above leads to,

$$
f(\omega) d \omega=\frac{L}{\pi v_{0}} d \omega
$$

There is only independent wave mode for this 1-dimensional crystal (given in the exercise) namely, longitudinal (in a 3 -dimensional crystal there are generally 3 modes, because then transversal waves can exist in both directions perpendicular to the direction of wave propagation, this would give a factor 3 in the equation above).
c)

The total number of frequencies (modes) should be N as there are N atoms. This is forced in the theory by introducing the Debye frequency which is the maximum frequency that cuts off higher modes,

$$
\int_{0}^{\omega_{D}} f(\omega) d \omega=N=\int_{0}^{\omega_{D}} \frac{L}{\pi v_{0}} d \omega=\frac{L \omega}{\pi v_{0}}
$$

It follows that:

$$
\omega_{D}=N \frac{\pi v_{0}}{L}
$$

Using the Debye frequency we can rewrite,

$$
f(\omega) d \omega=\frac{L}{\pi v_{0}} d \omega=\frac{N d \omega}{\omega_{D}}
$$

d)

First we derive an expression for the energy of the crystal,

$$
\begin{aligned}
E=\int_{0}^{\omega_{D}} f(\omega) \bar{\varepsilon}(\omega) d \omega & =\int_{0}^{\omega_{D}}\left(\frac{1}{2} \hbar \omega+\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}\right) \frac{N d \omega}{\omega_{D}} \\
& =\frac{N}{\omega_{D}} \int_{0}^{\omega_{D}}\left(\frac{1}{2} \hbar \omega+\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}\right) d \omega=\frac{1}{2} N \hbar \omega_{D}+\frac{N}{\omega_{D}} \int_{0}^{\omega_{D}}\left(\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}\right) d \omega
\end{aligned}
$$

The heat capacity follows from,

$$
\begin{aligned}
C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V} & =\left(\frac{\partial E}{\partial \beta}\right)_{V}\left(\frac{\partial \beta}{\partial T}\right)_{V}=-\frac{1}{k T^{2}}\left(\frac{\partial E}{\partial \beta}\right)_{V} \\
& =-\frac{1}{k T^{2}} \frac{\partial}{\partial \beta}\left(\frac{1}{2} N \hbar \omega_{D}+\frac{N}{\omega_{D}} \int_{0}^{\omega_{D}}\left(\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}\right) d \omega\right)= \\
& =-\frac{1}{k T^{2}} \frac{N}{\omega_{D}}\left(\int_{0}^{\omega_{D}} \frac{\partial}{\partial \beta}\left(\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}\right) d \omega\right) \\
& =-\frac{1}{k T^{2}} \frac{N}{\omega_{D}}\left(\int_{0}^{\omega_{D}} \frac{\hbar^{2} \omega^{2} e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}} d \omega\right) \\
& =\frac{\hbar^{2}}{k^{2} T^{2}}\left(\frac{k T}{\hbar}\right)^{3} \frac{N k}{x_{D}}\left(\frac{\hbar}{k T}\right)\left(\int_{0}^{x_{D}} \frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}} d x\right)=\frac{N k}{x_{D}}\left(\int_{0}^{x_{D}} \frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}} d x\right)
\end{aligned}
$$

With

$$
x_{D}=\frac{\hbar \omega}{k T}=\frac{\theta_{D}}{T}
$$

When $T \rightarrow 0$ then $x_{D}=\frac{\theta_{D}}{T} \rightarrow \infty$ and,

$$
C_{V}=N k\left(\frac{T}{\theta_{D}}\right)\left(\int_{0}^{\infty} \frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}} d x\right)
$$

The definite integral is a number and independent of the temperature thus, when $T \rightarrow 0$ then C_{V} decreases like T.

